
29

Chapter 4

4.N32 Examples and Case Studies

This chapter provides examples and case studies of programs that have been converted
from o32 to n32. Each step in the conversion is presented and examined in detail.
Examples include:

• “An Example Application”

• “Building and Running the o32 Application”

• “Porting Issues”

• “Building and Running the N32 Application”

• “Building Multiple Versions of the Application”

An Example Application

An examination of the following application, app1, illustrates the steps necessary to port
from o32 to n32. As you can see, app1 is trivial in functionality, but it is constructed to
point out several of the issues involved in converting code from o32 to n32.

App1 contains the following files:

• main.c, which contains the function main().

• foo.c, which contains foo() a varargs function.

• gp.s, which contains the assembly language leaf routine, get_gp(). This function
returns the value of the global pointer register ($gp).

• regs.s, which contains the assembly language function regs(). This function is linked
separately into its own DSO. The function regs() returns the value of $gp, the return
address register ($ra), and the stack pointer ($sp). This function also makes calls to
the libc routines malloc() and free() as well as calculating the sum of two double
precision values passed to it as arguments and returns the sum through a pointer
that is also passed to it as an argument.

30

Chapter 4: N32 Examples and Case Studies

Figure 4-1 shows a call tree is for the app1 program. It illustrates that main() calls get_gp(),
foo() and printf(). The function foo() calls regs() and printf(), while regs() calls malloc()
and free(). The figure also shows that app1 is linked against two shared objects, libc.so
and regs.so.

Figure 4-1 Call Tree for App1

The source code for the original versions of main.c, foo.c, gp.s. and regs.s are shown below.

/* main.c */

extern void foo();

get_gp()

main()

foo()

printf()

malloc()

free()

regs()

libc.so

app1

regs.so

An Example Application

31

main()

{

 unsigned gp,ra,sp, get_regs();

 double d1 = 1.0;

 double d2 = 2.0;

 double res;

 gp = get_gp();

 printf(“gp is 0x%x\n”, gp);

 foo(7, 3.14, &gp, &ra,

 &sp, d1, &d2, &res);

}

/* foo.c */

#include <stdarg.h>

void foo(int narg, ...)

{

 va_list ap;

 double d1;

 double daddr1, *daddr2, *resaddr;

 unsigned *gp, *ra, *sp;

 va_start(ap, narg);

 printf(“Number of Arguments is: %d\n”,narg);

 d1 = va_arg(ap, double);

 printf(“%e\n”,d1);

 gp = va_arg(ap, unsigned*);

 ra = va_arg(ap, unsigned*);

 sp = va_arg(ap, unsigned*);

 daddr1 = va_arg(ap, double);

 daddr2 = va_arg(ap, double*);

 resaddr = va_arg(ap, double*);

 printf(“first double precision argument is %e\n”,daddr1);

 printf(“second double precision argument is %e\n”,*daddr2);

 regs(gp, ra, sp, daddr1, daddr2, resaddr);

32

Chapter 4: N32 Examples and Case Studies

 printf(“Back from assembly routine\n”);

 printf(“gp is 0x%x\n”,*gp);

 printf(“ra is 0x%x\n”,*ra);

 printf(“sp is 0x%x\n”,*sp);

 printf(“result of double precision add is %e\n”,*resaddr);

 va_end(ap);

}

/* gp.s */

#include <regdef.h>

#include <asm.h>

LEAF(get_gp)

 move v0, gp

 j ra

 .end get_gp

/* regs.s */

#include <regdef.h>

 .text

 .globlregs # make regs external

 .entregs 2

regs:

 .set noreorder

 .cploadt9 # setup gp

 .set reorder

 subu sp, 32 # create stack frame

 sw ra, 28(sp) # save return address

 .cprestore 24 # for caller saved gp

 # save gp 24(sp)

 sw gp, 0(a0) # return gp in first arg

 sw ra, 0(a1) # return ra in second arg

 sw sp, 0(a2) # return sp in third arg

 li a0, 1000 # call libc routines

 jal malloc # for illustrative purposes

 move a0, v0 # to make regs

 jal free # a nested function

 lw t0, 56(sp) # get fifth argument from stack

 lwc1 $f4, 4(t0) # load it in fp register

 lwc1 $f5, 0(t0) # fp values are stored in LE

 # format

Building and Running the o32 Application

33

 lwc1 $f6, 52(sp) # get fourth argument from stack

 lwc1 $f7, 48(sp) # fp values are stored in LE

 # format

 add.d $f8, $f4, $f6 # do the calculation

 lw t0, 60(sp) # get the sixth argument

 # from the stack

 swc1 $f8, 4(t0) # save the result

 swc1 $f9, 0(t0) # fp values are stored in LE

 lw ra, 28(sp) # get return address

 addu sp, 32 # pop stack

 j ra # return to caller

 .end regs

Building and Running the o32 Application

The commands used to build app1 are shown below. As mentioned previously, regs.s is
compiled and linked separately into its own DSO, while main.c, foo.c and gp.s are
compiled and linked together.

%cc -32 -O -shared -o regs.so regs.s

%cc -32 -O -o app1 main.c foo.c gp2.s regs.so

In order to run the application, the LD_LIBRARY_PATH environment variable must be
set to the directory where regs.so resides.

%setenv LD_LIBRARY_PATH .

Running the application produces the following results. Note that the value of $gp is
different when code is executing in the regs.so DSO.

%app1

gp is 0x100090f0

Number of Arguments is: 7

3.140000e+00

first double precision argument is 1.000000e+00

second double precision argument is 2.000000e+00

Back from assembly routine

gp is 0x5fff8ff0

34

Chapter 4: N32 Examples and Case Studies

ra is 0x400d10

sp is 0x7fff2e28

result of double precision add is 3.000000e+00

Porting Issues

If the files foo.c and main.c were recompiled for n32, the resulting executable would not
work for a variety of reasons. Each reason is examined below and a solution is given. The
resulting set of files will work when compiled either for o32 or for n32. This section
covers:

• “Varargs Routines”

• “Assembly Language Issues”

Varargs Routines

Attempting to recompile main.c foo.c –n32 results in two sets of warnings shown below:

%cc -n32 -O -o app1 main.c foo.c gp2.s

foo.c

!!! Warning (user routine ’foo’):

!!! Prototype required when passing floating point parameter to

varargs routine: printf

!!! Use ’#include <stdio.h>’ (see ANSI X3.159-1989, Section 3.3.2.2)

ld32: WARNING 110: floating-point parameters exist in the call for

“foo”, a VARARG function, in object “main.o” without a prototype --

would result in invalid result. Definition can be found in object

“foo.o”

ld32: WARNING 110: floating-point parameters exist in the call for

“printf”, a VARARG function, in object “foo.o” without a prototype

-- would result in invalid result. Definition can be found in

object “/usr/lib32/mips4/libc.so”

The first warning points out that printf() is a varargs routine that is being called with
floating point arguments. Under these circumstances, a prototype must exist for printf().
This is accomplished by adding the following line to the top of foo.c:

#include <stdio.h>

Porting Issues

35

The second warning points out that foo() is also a varargs routine with floating point
arguments and must also be prototyped. This is fixed by changing the declaration of foo()
in main.c to:

foo(int, ...)

For completeness, <stdio.h> is also included in main.c to provide a prototype for printf()
should it ever use floating point arguments.

As a result of these small changes, the C files are fixed and ready to be compiled –n32.
The new versions are shown below.

/* main.c */

#include <stdio.h>

extern void foo(int, ...);

main()

{

 unsigned gp,ra,sp, get_regs();

 double d1 = 1.0;

 double d2 = 2.0;

 double res;

 gp = get_gp();

 printf(“gp is 0x%x\n”, gp);

 foo(7, 3.14, &gp, &ra,

 &sp, d1, &d2, &res);

}

/* foo.c */

#include <stdio.h>

#include <stdarg.h>

void foo(int narg, ...)

{

 va_list ap;

 double d1;

 double daddr1, *daddr2, *resaddr;

 unsigned *gp, *ra, *sp;

 va_start(ap, narg);

36

Chapter 4: N32 Examples and Case Studies

 printf(“Number of Arguments is: %d\n”,narg);

 d1 = va_arg(ap, double);

 printf(“%e\n”,d1);

 gp = va_arg(ap, unsigned*);

 ra = va_arg(ap, unsigned*);

 sp = va_arg(ap, unsigned*);

 daddr1 = va_arg(ap, double);

 daddr2 = va_arg(ap, double*);

 resaddr = va_arg(ap, double*);

 printf(“first double precision argument is %e\n”,daddr1);

 printf(“second double precision argument is %e\n”,*daddr2);

 regs(gp, ra, sp, daddr1, daddr2, resaddr);

 printf(“Back from assembly routine\n”);

 printf(“gp is 0x%x\n”,*gp);

 printf(“ra is 0x%x\n”,*ra);

 printf(“sp is 0x%x\n”,*sp);

 printf(“result of double precision add is %e\n”,*resaddr);

 va_end(ap);

}

Assembly Language Issues

Since get_gp() is a leaf routine that is linked in the same DSO where it is called, no
changes are required to port it to n32. However, you have to recompile it.

Since get_gp() is a leaf routine that is linked in the same DSO where it is called, no
changes are required to port it to n32. However, you have to recompile it.

On the other hand, regs() requires a lot of work. The issues that need to be addressed are
detailed below.

 gp register

As explained throughout this book, the o32 ABI follows the convention that $gp (global
pointer register) is caller saved. This means that the global pointer is saved before each
function call and restored after each function call returns. This is accomplished by using

Porting Issues

37

the .cpload and .cprestore assembler pseudo instructions respectively. Both lines are
present in the original version of regs.s.

The n32 ABI, on the other hand, follows the convention that $gp is callee saved. This
means that $gp is saved at the beginning of each routine and restored right before that
routine itself returns. This is accomplished through the use of .cpsetup, an assembler
pseudo instruction.

The recommended way to deal with these various pseudo instructions is to use the
macros provided in <sys/asm.h>. The macros below will provide correct use of these
pseudo instructions whether compiled for o32 or for n32.

• SETUP_GP expands to the .cpload t9 pseudo instruction for o32. For n32 it is null.

• SAVE_GP(GPOFF) expands to the .cprestore pseudo instruction for o32. For n32 it is
null.

• SETUP_GP64(GPOFF, regs) expands to the .cpsetup pseudo instruction for n32. For
o32 it is null.

Register Size

Under o32, registers are 32 bits wide. Under n32, they are 64 bits wide. As a result,
assembly language routines must be careful in the way they operate on registers. The
following macros defined in <sys/asm.h> are useful because they expand to 32-bit
instructions under o32 and to 64-bit instructions under n32.

• REG_S expands to sw for o32 and to sd for n32.

• REG_L expands to lw for o32 and to ld for n32.

• PTR_SUBU expands to subu for o32 and to dsubu for n32.

• PTR_ADDU expands to addu for o32 and to daddu for n32.

Argument Passing

The get_regs() function in regs.s is called with six arguments. Under o32, the first three
are passed in registers a0 through a2. The fourth argument (a double precision
parameter) is passed at offset 16 relative to the stack. The fifth and sixth arguments are
passed at offsets 24 and 28 relative to the stack, respectively. Under n32, however, all of
the arguments are passed in registers. The first three arguments are passed in registers a0
through a2 as they were under o32. The next parameter is passed in register $f15. The last

38

Chapter 4: N32 Examples and Case Studies

two parameters are passed in registers a4 and a5 respectively. Table 4-1 summarizes
where each of the arguments are passed under the two conventions.

Note: Under o32, there are no a4 and a5 registers, but under n32 they must be saved on
the stack because they are used after calls to an external function.

The code fragment that illustrates accessing the arguments under n32 is shown below:
 mov.d $f4,$f15 # 5th argument in 5th fp

 # arg. register

 l.d $f6,0(a4) # fourth argument in

 # fourth arg. register

 s.d $f8,0(a5) # save in 6th arg. reg

Extra Floating point Registers

As explained in Chapter 3, “N32 Compatibility, Porting, and Assembly Language
Programming Issues,” floating point registers are 64 bits wide under n32. They are no
longer accessed as pairs of single precision registers for double precision calculations. As
a result, the section of code that uses the pairs of lwc1 or swc1 instructions must be
changed. The simplest way to accomplish this is to use the l.d assembly language
instruction. This instruction expands to two lwc1 instructions under -mips1; under
-mips2 and above, it expands to the ldc1 instruction.

Putting it together

The new version of regs.s is shown below. It is coded so that it will compile and execute
for either o32 or n32 environments.

Table 4-1 Argument Passing

Argument o32 n32

argument1 a0 a0

argument2 a1 a1

argument3 a2 a2

argument4 $sp+16 $f15

argument5 $sp+24 a4

argument6 $sp+28 a5

Porting Issues

39

/* regs.s */

#include <sys/regdef.h>

#include <sys/asm.h>

.text

LOCALSZ=5 # save ra, a4, a5, gp, $f15

FRAMESZ= (((NARGSAVE+LOCALSZ)*SZREG)+ALSZ)&ALMASK

RAOFF=FRAMESZ-(1*SZREG) # stack offset where ra is saved

A4OFF=FRAMESZ-(2*SZREG) # stack offset where a4 is saved

A5OFF=FRAMESZ-(3*SZREG) # stack offset where a5 is saved

GPOFF=FRAMESZ-(4*SZREG) # stack offset where gp is saved

FPOFF=FRAMESZ-(5*SZREG) # stack offset where $f15 is

 # saved

 # a4, a5, and $f15 don’t have to

 # be saved, but no harm done in

 # doing so

NESTED(regs, FRAMESZ, ra)

 # define regs to be a nested

 # function

 SETUP_GP # used for caller saved gp

 PTR_SUBU sp,FRAMESZ # setup stack frame

 SETUP_GP64(GPOFF, regs) # used for callee saved gp

 SAVE_GP(GPOFF) # used for caller saved gp

 REG_S ra, RAOFF(sp) # save ra on stack

#if (_MIPS_SIM != _MIPS_SIM_ABI32)

 # not needed for o32

 REG_S a4, A4OFF(sp) # save a4 on stack (argument 4)

 REG_S a5, A5OFF(sp) # save a5 on stack (argument 5)

 s.d $f15,FPOFF(sp) # save $f15 on stack (argument 6)

#endif /* _MIPS_SIM != _MIPS_SIM_ABI32 */

 sw gp, 0(a0) # return gp in first arg

 sw ra, 0(a1) # return ra in second arg

 sw sp, 0(a2) # return sp in third arg

 li a0, 1000 # call malloc

 jal malloc # for illustration purposes only

 move a0, v0 # call free

 jal free # go into libc.so twice

40

Chapter 4: N32 Examples and Case Studies

 # this is why a4, a5, $f15

 # had to be saved

#if (_MIPS_SIM != _MIPS_SIM_ABI32)

 # not needed for o32

 l.d $f15,FPOFF(sp) # restore $f15 (argument #6)

 REG_L a4, A4OFF(sp) # restore a4 (argument #4)

 REG_L a5, A5OFF(sp) # restore a5 (argument #5)

#endif /* _MIPS_SIM != _MIPS_SIM_ABI32 */

#if (_MIPS_SIM == _MIPS_SIM_ABI32)

 # for o32 arguments will

 # need to be pulled from the

 # stack

 lw t0,FRAMESZ+24(sp) # fifth argument is 24

 # relative to original sp

 l.d $f4,0(t0) # use l.d for correct code

 # on both mips1 & mips2

 l.d $f6,FRAMESZ+16(sp) # fourth argument is 16

 # relative to original sp

 add.d $f8, $f4, $f6 # do the calculation

 lw t0,FRAMESZ+28(sp) # sixth argument is 28

 # relative to original sp

 s.d $f8,0(t0) # save the result there

#else

 # n32 args are in regs

 mov.d $f4,$f15 # 5th argument in 5th fp

 # arg. register

 l.d $f6,0(a4) # fourth argument in

 # fourth arg. register

 add.d $f8, $f4, $f6 # do the calculation

 s.d $f8,0(a5) # save in 6th arg. reg

#endif /* _MIPS_SIM != _MIPS_SIM_ABI32 */

 REG_L ra, RAOFF(sp) # restore return address

 RESTORE_GP64 # restore gp for n32

 # (callee saved)

 PTR_ADDU sp,FRAMESZ # pop stack

 j ra # return to caller

.endregs

Building and Running the N32 Application

41

Building and Running the N32 Application

The commands for building an n32 version of app1 are shown below. The only difference
is in the use of the –n32 argument on the compiler command line. If app1 was a large
application using many libraries, the command line or makefile would possibly need to
be modified to refer to the correct library paths. In the case of app1 the correct libc.so is
automatically used as a result of the –n32 argument.

%cc -n32 -O -shared -o regs.so regs.s

%cc -n32 -O -o app1 main.c foo.c gp.s regs.so

In order to run the application, the LD_LIBRARY_PATH environment variable must
again be set to the directory where regs.so resides.

%setenv LD_LIBRARY_PATH .

Running the application produces the following results. Note that the values of some of
the returned registers are different from those returned by the o32 version of app1.

%app1

gp is 0x100090e8

Number of Arguments is: 7

3.140000e+00

first double precision argument is 1.000000e+00

second double precision argument is 2.000000e+00

Back from assembly routine

gp is 0x5fff8ff0

ra is 0x10000d68

sp is 0x7fff2e30

result of double precision add is 3.000000e+00

Building Multiple Versions of the Application

Following the procedure above generates new n32 versions of app1 and regs.so; however,
they overwrite the old o32 versions. To build multiple versions of app1, use one of the
following methods:

42

Chapter 4: N32 Examples and Case Studies

• Use different names for the n32 and o32 versions of the application and DSO. This
method is simple, but for large applications, you must rename each DSO.

• Create separate directories for the o32 and n32 applications and DSOs, respectively.
Modify the commands above or makefiles to create app1 and reg.so in the
appropriate directory. This method offers more organization than the approach
above, but you must set the LD_LIBRARY_PATH accordingly.

• Create separate directories as specified above, but add the –rpath argument to the
command line that builds app1.

